Introduction to Medical Ultrasound

John Campbell MD and Ryan Embertson MD UNC Diagnostic Radiology Residency July 2017

Lecture Objectives & Outline

- Lecture participants will learn Ultrasound physics Ultrasound image formation and artifacts Abdominal and FAST imaging introduction
- Lecture Outline
 - Ultrasound physics Ultrasound image formation Ultrasound transducers and artifacts Abdominal ultrasound scan planes and images

What is Ultrasound?

- Medical imaging technique that exposes the body to high frequency mechanical, longitudinal sound waves and generates images based on their returning echoes
- Similar to echolocation used by bats, whales and SONAR of submarines
- Frequencies exceed the upper limit of human hearing (20,000 Hz), typically 2MHz to 16 MHz
- Noninvasive, safe modality that allows real time imaging with numerous medical applications

 Imaging With

Properties of Sound Wave

- Velocity speed with which a sound wave travels through a medium (cm/sec), determined by density and stiffness of the medium it travels in (slowest in air, fastest in solids)
- Frequency rate of oscillations (cycles per second), Units = Hertz (Hz) = 1 cycle per second
- Wavelength distance required to complete one cycle
- Amplitude strength/intensity of sound wave at any point in time

How Ultrasound Works

- Transducer creates sound waves and receives echoes using the pizoelectric effect
- Pizoelectric crystals within the transducer change shape when electric current is applied, causing vibrations and production of mechanical sound waves (electrical signal to acoustic/mechanical)
- Need gel as the high frequency sound cannot travel through air

- Sound waves travel into the body and hit a boundary/interface between tissues (fluid-soft tissue, soft tissue-bone). Some sound reflects off these internal structures while some travel further into tissue (transmission)
- Reflected echoes are transformed back into electric signals by the pizoelectric elements and the computer generates an image

UNC

SCHOOL OF MEDICINE

Pizoelectric Crystals and Frequency

- The frequency of the probe is determined by the thickness of the pizoelectric crystals
- Thinner elements produce HIGHER frequencies, whereas thicker elements produce LOWER frequencies
- Higher frequency, less penetration/travel distance
- Lower frequency, deeper penetration

Low Freq (3 MHz)

High Freq (12 MHz)

Interaction with Tissues

- Reflection
- Transmission
- Scattering/refraction redirection of sound wave caused by small reflector or rough interface
- Attenuation the deeper the wave travels in the body, the weaker it becomes
- Air>bone>muscle>soft tissue>blood>water are listed in order of ability to attenuate the sound beam (via reflection, absorption, and refraction and proportional to frequency)

Interaction with Tissues

Strength of the Echoes

- Reflected echoes are transformed back into electric signals by the pizoelectric elements, signals then processed by the computer and produce greyscale 'dots' on the screen
- Brightness of the dots is proportional the the strength of the returning sound wave
- Location of dot is determined by the travel time

Strength of Echoes

- Strong reflectors = White dots (diaphragm, osseous, stones)
- Weaker reflectors = Grey dots (LN, solid viscera)
- No reflectors = No dots (simple fluid, blood vessels)

Ultrasound Terms

- Echogenicity Amount of echoes an organ/structure has, ie the ability to return the signal in ultrasound examinations
- A structure is echogenic if it has internal echoes, ie it is capable of reflecting sound waves. The term echogenic is used in comparison to other imaged/surrounding structures

Ultrasound Terms

- Anechoic = no echoes (simple fluid, gallbladder, urine, cyst)
- Hypoechoic = low level internal echoes (LN, liver mass)
- Isoechoic = equal echoes to surrounding tissue (solid viscera)
- Hyperechoic / Echogenic = bright internal echoes (bone, fat)

Frequency vs Resolution

- Higher frequency, better resolution (NB: cannot penetrate deep into the body), used for superficial structures
- Lower frequency, less resolution (may penetrate deep into body), used for deeper structures

Lower frequency

Deeper structures

Liver and diaphragm

Transducers - Probes

- Generally described by the size and shape of their face (socalled footprint)
- 3 basic types used in emergency setting: linear, curvilinear, phased array

Linear probe

- Higher frequency 5-13 MHz with better resolution, lesser penetration therefore superficial imaging
- Crystals aligned in linear fashion with flat head and produce sound waves in straight line to produce rectangular image

Curvilinear (convex) probe

- Low frequency 1-8 MHz with better penetration, lesser resolution therefore deeper structure imaging (abd and pelv)
- Crystals aligned along a curved surface and produce sound waves that produce wide field of view image

Phased array probe

- 2-8 MHz with small/flat footprint, used in cardiac imaging in small spaces between ribs
- Crystals grouped closely together and produce sound waves that originate from single point and fan outward

Artifact

- Ultrasound software makes the assumption that all waves travel straight, maintain constant speed (1540m/s), and reflect straight back
- In reality, the sound waves do not follow these strict rules, which leads to artifact
- Artifact can be used to the sonographer's and sonologist's advantage

Posterior acoustic shadowing

Hyperechoic structures reflect a majority of sound waves, leaving a dark shadow behind them

Increased through transmission

Anechoic structures do not reflect sound waves, leaving a bright band behind them

Mirror image artifact

In clinical imaging, a duplicated structure is commonly identified at level of the diaphragm, with the pleural-air interface acting as the strong reflector

Beware!

NOT a second mass

Ring down artifact

Resonant vibrations within fluid trapped between tetrahedron of air bubbles create a continuous sound wave that is transmitted back to the transducer

Peritoneal stripe sign

Presence of tiny bubbles of free air in addition to the acoustic mismatch at interface between soft tissue and air produces bright hyperechoic peritoneal stripe

Imaging with Ultrasound

Transducer orientation Scan planes Abdominal, pelvic, and cardiac images

Orientation of Transducer

• Conventionally, the probe notch is toward the patient's head during longitudinal scan and toward patient's right side during a transverse scan

Notch toward patient head in longitudinal scanning

Orientation of Transducer

• Conventionally, the probe notch is toward the patient's right during a transverse scan and toward the patient's head during

a longitudinal scan

Notch toward patient right in transverse scanning

Transverse Plane

Longitudinal Plane

Anatomy: Liver

Anatomy: Gallbladder

Anatomy: Kidneys

Anatomy: Pancreas

Anatomy: Spleen

Anatomy: Pelvis

Transverse Images

Female Pelvis

Anatomy: Aorta

RUQ View of the Proximal Aorta

Anatomy: Heart in Long Axis

Anatomy: Heart in Short Axis

Thank you for your time and attention

john.campbell@unchealth.unc.edu ryan.embertson@unchealth.unc.edu

